Top Mass at the Tevatron

Un-ki Yang
University of Manchester
University of Chicago

On behalf of the D0 and CDF Collaborations

Why do we care about Top Mass?

- Top mass is a fundamental SM parameter
 - important in radiative corrections:

Yukawa coupling ~1

- Consistency check of SM, and it constrains M_{Higgs} with M_w and other electroweak precision measurements
- A key to understand electroweak symmetry breaking?
- Constraint on SUSY models

Top Production and Decay

 \triangleright At the Tevatron, mainly primarily produced in pairs (σ ~7pb) via strong interaction.

ightharpoonup Top decays as free quark due to large mass ($\tau_{top} \sim 4 \times 10^{-25} \, s$)

- □ Dilepton (5%, small bkgds)
 - 2 leptons(e/ μ), 2 b jets, missing E_T (2 ν s)
- ☐ Lepton+Jet (30%, manageable bkgds)
 - 1 lepton(e/ μ), 4 jets (2 b jets), missing E_T (1 ν)
- All-hadronic (44%, large bkgds)

6 jets (2 b jets)

The CDF and DØ Detectors

- Calorimeters (σ/E~ 80% /√E)
- Precision tracking with SI:
- Muon chambers
- Excellent muon coverage(D0), excellent tracking (CDF)

Multi-purpose detector; precision measurements search for new physics

Great Performance (Tevatron, D0, and CDF)

Not all D0 data included

M_{top} Measurement : Challenge 1

Not a just calculation of the invariant mass of W(jj) and b!!!

- Measured jet energy
 - ≠ quark energy from top decay
 - Quarks: showering, hadronization, jet clustering
 - Extra radiated jets

Excellent jet energy correction and good modeling of extra gluon radiations (40%)

Challenge 2

- There are two top quarks, not all final states available
 - Good to have more than one:but too many possibilities to find a correct combination (all jets: 90), not enough information for dilepton channel

3 constraints: two M(w)=80.4, one M(t)=M(tb)

Lepton+jets

Ncomb(btag)

2(2)

12 (6)

360(90)

2 missing v **Unconstrained: Small BR**

1 missing ν Overconstrained: **Golden Channel**

No missing Overconstrained: Large bkgds

B-tagging help!

B-tagging

B-tag: SecVtx tagger

> B-tagging helps: reduced wrong comb., and improves resolution.

Top Mass Measurements

Template

- Reconstruct m_t event-byevent - the best value per each event
- Create "templates" using simulated events with different top mass values, and backgrounds.
- Maximum Likelihood fit using signal+backgrounds templates

Matrix Element

- Calculate probability as top massfor all combinations in each event by Matrix Element calculation
 - maximize dynamic info.
- Build likelihood directly from the probabilities.
- Calibrate measured mass and error using simulated events

Jet Energy Scale(JES) Uncertainties

In-situ Calibration

JES uncertainty: mostly statistical, scaled with lum

Un-ki Yang, HCP 2006

Strategy

- Precision
- Consistency (different channels, methods)
- New Physics (bias)

	Method	Njets		B-tag		JES			Rec.
		Exact	+extra	Yes	No	Wjj+std	Wjj	No	variables
	TMP	4							mt, mjj, Lxy
LJ	ME								P(Mt,JES)
DIL	TMP	2							mt
	ME								P(Mt)
All-J	TMP+ME	6							mt, mtb
		both		On	nly DC			Or	nly CDF 11

Template Method in lepton+jet

> χ^2 kinematic fitter

$$\chi^{2} = \sum_{i=l,4 \text{ jets}} \frac{(\hat{p}_{T}^{i} - p_{T}^{i})^{2}}{\sigma_{i}^{2}} + \sum_{j=x,y} \frac{(\hat{p}_{T}^{UE} - p_{T}^{UE})^{2}}{\sigma_{j}^{2}} + \frac{(m_{jj} - m_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(m_{lv} - m_{W})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{bjj} - m_{W})^{2}}{\Gamma_{t}^{2}} + \frac{(m_{blv} - m_{W})^{2}}{\Gamma_{t}^{2}}$$

Select reco. m_t from assignment yielding lowest χ²

Mtop and JES: by likelihood fit using shape comparisons of mt & mjj dist.

Template Results in lepton+jets

$$M_{top} = 173.4 \pm 2.5(stat. + JES)$$

 $\pm 1.3 (syst.) GeV/c^2$

World best single measurement!

40% improvement on JES using in-situ JES calibration

Matrix Element Method in lepton+jets

- Maximize kinematic and dynamic information
- Calculate a probability per event to be signal or background as a function of the top mass
- Signal probability for a set of measured jets and lepton (x)

$$P(x;M_{top},JES) = \frac{1}{\sigma} \int dq_1 dq_2 f(q_1) f(q_2) d\sigma(y;M_{top}) W(x,y,JES)$$

Differential cross section: LO ME (qq->tt) only **Transfer function:** probability to measure x when parton-level y was produced

- > JES is a free parameter, constrained in situ by mass of the W
- Background probability is similar, but no dependence on M_{top}

$$L(f_{top}, M_{top}, JES) \propto \prod_{i}^{Nevents} \left(f_{top} P_{top,i}(M_{top}, JES) + (1 - f_{top}) P_{bkgd,i}(JES) \right)$$

M.E. Results in lepton+jets

$$M_{top} = 170.6^{+4.0}_{-4.7}(stat. + JES) \pm 1.4 (syst.) GeV/c^2$$

- Reduced the JES error with in-situ calibration, consistent with external calibration (JES=1)
- \triangleright The b-tagging information improves δ Mtop(stat) by 35% (17% expected)

Template using Decay Length (Lxy)

- Uses the average transverse decay length, Lxy of the b-hadrons
- ➤ B hadron decay length \propto b-jet boost \propto M_{top} (>=3jets)

PRD 71, 054029 by C. Hill et al.

Insensitive to JES, but need Lxy simulation

$$M_{\text{top}} = 183.9_{-13.9}^{+15.7} \text{ (stat)} \pm 0.3 \text{ (JES)} \pm 5.6 \text{ (syst)} \text{ GeV/}c^2$$

Statistics limited, but can make big contributions at Run IIb, LHC

Summary in lepton+jets

Systematic	TMT	ME
$\Delta M_{top}(GeV/c^2)$	(CDF)	(D0)
JES	(1.8)	(3.4)
Residual JES	0.7	8.0
B-jet JES	0.6	0.7
ISR/FSR	0.5	0.5
Bkgd Shape	0.5	0.3
Generators	0.3	
PDFs	0.3	0.1
Method	0.3	0.5
B-tagging	0.1	0.2
TOTAL	1.3	1.4

All consistent!!

Methods in dilepton

- ➤ Unconstrained system: 2 neutrinos, but 1 missing E_T observable
 - Template:
 - Assume $\eta(v)$ (or $\phi(v)$, $P_7(tt)$)
 - Sum over all kinematic solutions, and (l,b) pairs, select the most probable value as a reco. m_t
 - Matrix Element:
 - Integrated over unknown variables using the LO M.E., assuming jet angles, lepton are perfect, and jets are b's
 - Obtain P(Mtop) for signal and backgrounds
 - Calibrate off-set in pull and pull width using fully simulated MC

$$M_{\text{top}} = 175.6 \pm 10.6 \, (stat) \pm 6.0 \, (syst) \, \text{GeV/}c^2$$

$$M_{\text{top}} = 164.5 \pm 4.5 \text{ (stat)} \pm 3.1 \text{(syst)} \text{ GeV/}c^2$$

Summary in dileptons

Systematic ΔM _{top} (GeV/c²)	ME (CDF)	TMT (D0)
JES	2.6	3.5
Bkgd Shape	0.8	0.2
Sample	0.7	
composition		
ISR/FSR	0.7	8.0
Generators	0.5	
PDFs	0.6	0.9
MC stats	0.8	0.3
Method	0.3	0.6
TOTAL	3.1	3.8

All consistent!!

All-Jets

- ➤ Largest BR, and no missing information, but large backgrounds, S/B = 1: 8 even after 1 b-tag
- Event Selection
 - $E_T/\sqrt{(\Sigma E_T)} < 3 (GeV)^{1/2}$
 - $\Sigma E_T \ge 280 \text{ GeV}$
 - $n_{b-taq} \ge 1 \text{ (b-tag)}$
 - Exactly 6 jets

 $ightharpoonup \chi^2$ kinematic Fitter with W mass contraint: fit two top quark masse s (m1, m2), then use χ^2 value to weight each permutation

Ideogram in All-jets

➤ 2D likelihood:

Convolution of Briet-Wigners and Gaussian resolution functions

$$\mathbf{L}(M_{top}, C_s) = \sum_{i=1}^{90} w_i \left[C_s Signal + (1 - C_s) Bkgd \right]$$
where $Signal(m_i^1, m_i^2, \sigma_1^2, \sigma_2^2, M_{top}) = p_{mat} S_{mat} + (1 - p_{mat}) S_{comb}$

CDF Run II Preliminary

$$M_{top} = 177.1 \pm 4.9 (stat) \pm 4.3 (JES)$$

 $\pm 1.9 (syst) GeV/c^2$

- First Tevatron Run II all jets M_{top} measurement
- Systematically limited M_{top} Results
- JES is correlated with S/B ratio

Combining M_{top} Results

> Are the channels consistent? (check by CDF)

```
Mtop(All Jets) = 178.7 \pm 5.5 GeV/c<sup>2</sup>
Mtop(Dilepton) = 164.8 \pm 4.8 GeV/c<sup>2</sup>
Mtop(Lep+Jets) = 173.5 \pm 2.8 GeV/c<sup>2</sup>
```

- ➤ Any systematic shift?
 - Missing systematic?
 - Bias due to new physics signal?

Tevaron Average

Implication for Higgs and SUSY

> A Precision EWK Fit

$$M_H = 89^{+42}_{-30} \text{GeV/c}^2$$

$$M_H < 175 \text{GeV/c}^2 @ 95\% C.L.$$

- Direct search(LEP):M_H > 114 GeV
- New result favors SUSY over SM, light SUSY

By Heinemeyer et al. (MSSM: m_H<140 GeV)

Few Lessons from Tevatron

- ➤ A major JES uncertainty is greatly reduced by the Wjj in-situ calibration (40% improvement with 700pb-1 data)
- ➤ B-jet specific uncertainty is small (<0.7 GeV)
 - Heavy-quark fragmentation
 - Color-interference
 - Semi-leptonic decay
- Good b-tagger is important
- ➤ Effect of the higher order (NLO) is small at the Tevatron (<0.5 GeV)
- qq vs gg events have different kinematics
 (2-2.5 GeV difference in top mass: CDF)
- Effect of the multiple interaction is small
- Effect of the backgrounds is small (except all-jets channel)

Summary and Future

- Achieved 1.3% precision of the Mtop measurement (Run IIa goal, δMtop to ~ 3 GeV/c² using only 30% data)
- Developed many tools (useful for LHC)
- With full Run-II dataset, able to achieve
 δMtop to < 1.5 GeV/c²
- More precision and consistency!!!

Syst.: ISR/FSR/NLO (backup)

- Method in hand to use Drell-Yan events to understand and constrain extra jets from ISR
 - Constraint scales with luminosity
 - Easily extendible to FSR.
- MC@NLO sample shows no add'l N LO uncertainty is needed.

